Filtering and Selecting
Load Libraries
Here we load some libraries.
Lorem ipsum lorem ipsum dolor sit amen. Lorem ipsum lorem ipsum dolor sit amen. Lorem ipsum lorem ipsum dolor sit amen. Lorem ipsum lorem ipsum dolor sit amen.
library(tidyverse)
library(knitr)
library(highcharter)
library(plotly)
## print methods. SHould move out to optional script that is called based on parameter value
<- function(df, options) {
knit_print_reactable_5_rows 1:5,] %>%
df[::reactable() %>%
reactable::knit_print()
knitr
}# registerS3method("knit_print_reactable_5_rows", "data.frame", knit_print_reactable_5_rows)
## functions
source(here::here("chapter_04_data_wrangling/utils/functions.R"))
## autograders
suppressMessages(source(here::here("chapter_04_data_wrangling/lessons/01_filtering_and_selecting_autograder.R")))
<- fontawesome::fa("fas fa-robot", fill = "purple")
question_icon
<- head(cars, 5) cars_head
Normal print table
cars
## speed dist
## 1 4 2
## 2 4 10
## 3 7 4
## 4 7 22
## 5 8 16
## 6 9 10
## 7 10 18
## 8 10 26
## 9 10 34
## 10 11 17
## 11 11 28
## 12 12 14
## 13 12 20
## 14 12 24
## 15 12 28
## 16 13 26
## 17 13 34
## 18 13 34
## 19 13 46
## 20 14 26
## 21 14 36
## 22 14 60
## 23 14 80
## 24 15 20
## 25 15 26
## 26 15 54
## 27 16 32
## 28 16 40
## 29 17 32
## 30 17 40
## 31 17 50
## 32 18 42
## 33 18 56
## 34 18 76
## 35 18 84
## 36 19 36
## 37 19 46
## 38 19 68
## 39 20 32
## 40 20 48
## 41 20 52
## 42 20 56
## 43 20 64
## 44 22 66
## 45 23 54
## 46 24 70
## 47 24 92
## 48 24 93
## 49 24 120
## 50 25 85
5 rows print table
cars
## speed dist
## 1 4 2
## 2 4 10
## 3 7 4
## 4 7 22
## 5 8 16
## 6 9 10
## 7 10 18
## 8 10 26
## 9 10 34
## 10 11 17
## 11 11 28
## 12 12 14
## 13 12 20
## 14 12 24
## 15 12 28
## 16 13 26
## 17 13 34
## 18 13 34
## 19 13 46
## 20 14 26
## 21 14 36
## 22 14 60
## 23 14 80
## 24 15 20
## 25 15 26
## 26 15 54
## 27 16 32
## 28 16 40
## 29 17 32
## 30 17 40
## 31 17 50
## 32 18 42
## 33 18 56
## 34 18 76
## 35 18 84
## 36 19 36
## 37 19 46
## 38 19 68
## 39 20 32
## 40 20 48
## 41 20 52
## 42 20 56
## 43 20 64
## 44 22 66
## 45 23 54
## 46 24 70
## 47 24 92
## 48 24 93
## 49 24 120
## 50 25 85
df print table
cars
## speed dist
## 1 4 2
## 2 4 10
## 3 7 4
## 4 7 22
## 5 8 16
## 6 9 10
## 7 10 18
## 8 10 26
## 9 10 34
## 10 11 17
## 11 11 28
## 12 12 14
## 13 12 20
## 14 12 24
## 15 12 28
## 16 13 26
## 17 13 34
## 18 13 34
## 19 13 46
## 20 14 26
## 21 14 36
## 22 14 60
## 23 14 80
## 24 15 20
## 25 15 26
## 26 15 54
## 27 16 32
## 28 16 40
## 29 17 32
## 30 17 40
## 31 17 50
## 32 18 42
## 33 18 56
## 34 18 76
## 35 18 84
## 36 19 36
## 37 19 46
## 38 19 68
## 39 20 32
## 40 20 48
## 41 20 52
## 42 20 56
## 43 20 64
## 44 22 66
## 45 23 54
## 46 24 70
## 47 24 92
## 48 24 93
## 49 24 120
## 50 25 85
plot
plot(cars)
leaflet
library(leaflet)
<-
Abuja leaflet(options = leafletOptions(minZoom = 11, maxZoom = 15)) %>%
setMaxBounds(lng1 = 7.379379, lat1 = 9.122775, lng2 = 7.564087, lat2 = 9.001400) %>%
addTiles() %>%
addMarkers(lng =7.491302, lat = 9.072264, popup = "hello!") %>%
setView(lng = 7.491302, lat = 9.072264, zoom = 12)
Abuja
plotly
library(plotly)
<- ggplot(cars, aes(speed, dist)) + geom_point()
p
ggplotly(p)
highcharter
$speed %>% highcharter::hchart() cars
reactable
%>% reactable::reactable() cars_head
DT
::datatable(cars_head) DT
Practice Question 5
## Test
Quiz
How many columns in the dataset starts with “is? (Use select)